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J. Phys. A:  Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

Neutron-alpha scattering 

D. A. F. OMOJOLA 
School of Mathematical and Physical Sciences, University of Lagos, Nigeria 
MS. received 12th January 1970, in revised form 13th July 1970 

Abstract. (i) A new formulation of the elastic neutron-alpha (n-'He) 
scattering using the most general form of the nuclear interaction which includes 
the central, non-central exchange-linear spin-orbit, tensor and quadratic 
spin-orbit forces is given. 

(ii) The resonating group method of Wheeler is employed to con- 
struct the five-body wave functions and from the Schrodinger equation a set 
of simultaneous integro-differential equations is derived. 

(iii) The Hamada and Johnston potentials used are expressed in 
Gaussian form permitting analytical integrations and leading to great economy of 
computing time. There are repulsive cores in all states. 

(iv) An extension of n-4He scattering formulation to include the 
D-state of the alpha wave function is discussed. 

(v) The resulting integro-differential equations are then solved 
by the method of finite differences. 

Programs for computing the direct and indirect (kernels) terms and for the 
solution of the equations written in Algol language were prepared for the 
University of London Atlas computer. The equations are then solved at 
different incident neutron energies. 

1. Introduction 
The five-body problem of n-4He has been formulated using the methods proposed 

by Omojola (1969-to be referred to as I). The elastic scattering of nJHe has been 
studied by several authors (Hochberg et al. 1954, 1955, Van Der Spuy 1956 and 
Kanada et al. 1963). 

The  nucleon-nucleon interaction is known to include both central and non-central 
forces. According to Rosenfeld (1948-pp. 312-4), and Okubo and Marshak (1958), 
the most general form of this interaction with the invariance and symmetry require- 
ments must be a linear combination of the following terms: 

(i) The  central exchange force 
(ii) The  linear spin-orbit force 

s(rij) V(rij>{(si + Sj>(ri - rj) x (pi - P ~ ) I  (1.1) 
(iii) The  tensor force 

and 
(iv) The  quadratic spin-orbit force 

(1.3) 

(1 *4) 

(1 .5)  

2 
,€?(rij) = V(rij){(ai ej)Lij- Qij) 

where 
LiI = (ri - rr) x (Pi -Pd 
Q i j  H(ai 9 Lij)(.j * Lij) + (aj * Lii)(ai * Ltj)I* 

V( r i j )  is a radial function, si is the Pauli spin matrix vector for the ith particle and 

630 
ri and pi are its position and momentum vectors respectively. 
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T h e  evidence for the existence of the non-central forces in the form of the linear 
spin-orbit and the tensor terms has been discussed by many authors (Signell and 
Marshak 1957, 1958, Gammel and Thaler 1957). The  necessity for the inclusion of 
the quadratic spin-orbit term is confirmed by the work of Hamada (1960, 1961) and 
Hamada and Johnston (1962) in order to produce all the available data of p-p and 
n-p below 300 MeV. 

I n  order to take care of the exchange nature of these forces between nucleons in 
various states, combinations of projection operators are constructed in such a way that 
each operator will pick out the pair of nucleons in a certain state only (Sribhibhadh 
1966). 

The  projection operators are 

i ( v w *  + ' b ,  B f j  + v m +  M f j  + "h ,  Hi,) (1 *6) 

v being 1 and 3 to represent the singlet and the triplet states respectively, k represent- 
ing the even and the odd parity states, Bf j ,  M f j  and Hi, are the usual Bartlett, Major- 
ana and Heisenberg exchange operators for the nuclei i and j .  

The  values of w ,  b, m and h are as follows: 

vw* = 1 for a l lv  (1.7) 

(1.8) 

9, = -1, 1b- = - 1 ,  3b+ = 1 ,  3 b -  = 

l m ,  = 1, lm-  = -1, 3m+ = 1, 3133- = -:). 
lh ,  = -1, ' h -  = 1, 3h+ = 1, 3h- = -1  

The  potential shape functions V( pi,) in this work are taken to be Gaussian forms 
whose parameters are determined by least squares fits to the Hamada and Johnston 
potential (Hamada and Johnston 1962). Two Gaussian terms are used for each poten- 
tial shape function so that one may represent the short-range contribution and the 
other the long-range one. 

The  interaction can now be written in full as 

4 4  

Vi, = 2 2 $(w + b,B,, + mvMij  + hvfIi3) "VA(ri,, a,, G,) + (e2/Tj j)8, j  (1.9) 
>.=l v = 1  

where 

yvJ.(rt3, ~ 3 )  = 2 exp(- ~ . ,y i3 ) [8 .2 , i+8a ,2 (~ (G, i -G3)  - Ltj) 
2 a ~2 

I c = l  

+ %3{3(Q, r d Q 3  * r,J/yt? - (5 ' Q.j>)+ 8A94((4i Q 3 ) G  - (2iA 
(1.10) 

where e is the Coulomb electronic charge, S,, = 1 if the nucleons are protons and zero 
otherwise, 8j , ,A,  is the kronecker delta having its usual meaning, X represents the kth 
Gaussian term, X takes the values 1, 2, 3 and 4 for the central, the linear spin-orbit, 
the tensor and the quadratic spin-orbit forces respectively. v = 1,2, 3 and 4 to 
represent the triplet even state, the triplet odd state, the singlet even state and the 
singlet odd state respectively. The  interaction given above is taken to be in the units 
i n  which 

c = f i = l .  (1.11) 
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2. The five-body wave function 
I n  quantum mechanics the superposition of stationary states is used in molecular 

theory and Wheeler (1937) applying this to nuclear binding energy or scattering 
problems developed the method of the resonating group structures. This is the method 
we are going to apply to our five-body problem of n-4He. This method specifies a 
wave function consisting of the product of the incompatible states and the sum of the 
compatible ones on a statistical basis. 

Wheeler postulates that a given system of n nucleons subdivides into groups of 
stable nuclei and nucleons at any instant of time. Thus 

] (2.1) 
Y( 123 . . . n)  = w,$l(n:)+z(ni) . . . +,(E:) + ~ .&($)$z (n~)  . . . $B(ni) + . I .  

+ %+,(nT)$z(n3 * * +,(4 
where for example &(n:) represents the wave function of a stable nucleus with n,  
nucleons and $2(ni) the wave function of a stable nucleus with n2 nucleons, etc., such 
that 

(2.2) 
1 1  1 n,+n2+ ...+ n, = n etc. 

and wl, w2, etc. are the ‘weights’ proportional to the probability of each configuration 
(related to binding energy). 

Consider a five-body problem, we can split the five-particle problem into 
deuterons, tritons and the alpha particles with their respective weights. However, 
since the alpha particle is strongly bound compared with deuterons and tritons we 
shall consider its contribution only. 

The spatial coordinates in the five-body problem of n-4He scattering are depicted 
in figure 1.  

5-4 

Figure 1 .  1 ,  2 and 3 are neutrons and 4 and 5 are protons. 

3. Neutron-alpha-particle scattering 
Consider the problem of n-4He scattering depicted in figure 2 symbolically. 

We have used the number 1 to represent the coordinate of the incident neutrons, 2 and 
3 are neutrons in the helium nucleus and 4 and 5 the nuclear protons; 2, 3, 4 and 5 
represents the alpha particle. 



Neutron-alpha scattering 633 

Since protons and neutrons are fermion particles, the wave function representing 
the motion of the system must be antisymmetric in 1, 2 and 3 and also in 4 and 5 .  

1 2 3  

5 4  
. - - f a  . 

-+. . 
Figure 2 

We may now write down the complete x-ave function in the resonating group using 
Hochberg’s (1953) notation in the form: 

where +( -i) is the antisymmetrized wave function of the target nucleus which does 
not contain the ith particle and + is the wave function of the incident neutron. 

The  ground state of 4He is of even parity and has a total angular momentum 
J = 0. The  possible values of the orbital angular momentum L are 0, 1 and 2. Thus 
the ground state is a mixture of ISo -, 3P0 - and 5D0- states (Gerjuoy and Schwinger 
1942, Irving 1953 and Abraham et al. 1955). The principal 3P0- state will not be 
considered in this paper for its contribution is quite negligible for a nuclear force of 
the type we are going to consider. Similarly we do not take into account the 3P0- 
state probability because we have 

( 1 s o l ~ T 1 3 ~ o )  = (1so lvLs/3~o)  = (3~oIVT15DO) 

= o  ( 3 4  

(3.3) 
while only 

is non-zero. 
Also, since the 3p0 - state will appear only as a second approximation, it therefore 

follows that as a first approximation we can neglect the 3p0- state in our n-4He 
scattering problems. 

The  alpha particle wave function +( - 1) can be written in the notation of Sugie 
et al. (1957) as 

(Is0 1 V T  1”o ) 

+(- 1) = 2 +L,S+o( -  1) = c +:,*,o(- 1) 
9 s, P 

Y N  

= 2 g:(u, V ,  W ) W ; ( U ,  a ,  W ;  02,0,)~(23,45). (3 -4) 
s, P 

s can take two values namely s = 0 and s = 2. The  superscript p distinguishes the 
many possible spin-angular wave functions; U ,  v ,  and w are the three independent 
internal space coordinates and x is the spin wave function of the singlet state, 

We define x as 
N N  

x(23945) = B(t12P3-P2c13)(c14P5-P4clj) E x(- l )*  (3.5) 

We can now write equation (3.4) in the form 
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where 

and 

gs and g D  represent the normalized spatial parts of the wave functions for the principal 
Iso- and 5D,... state respectively. 

w D  is defined by 
6 

2 
W D  = 2 Y i j s i j  = 3 ( a 2  * r23)(44 r45) + 3 ( ~ 2  . r 4 5 ) ( ~ g  rx+)-z(az - 44)(r23 * ~ 4 5 ) .  

(3 -9) 
I > j = 2  

c2 determines the amount of the D-state in the mixture. We assume that both #s and 
# D  are normalized to unity, so that #( - 1) is then normalized to unity. 

The  radial parts $s and # D  are of the form: 

and 

(3.10) 

( 3 . 1 1 )  

where Ns and N D  are the normalization constants. The  radial parts are assigned 
different variation parameters, a and ,$ respectively. 

The  wave function of the incident neutron can be decomposed into partial waves 
hy writing it in the form 

( 3 . 1 2 )  

where ( Y ,  8, +) are the spherical polar coordinates of the neutron relative to the 
centre-of-mass (CM) of 4He and xg is the spin-angular wave function of the neutrons. 
Since the spin of 4He is zero, it follows therefore that the magnetic quantum number 
m is also the magnetic quantum number of the whole system. 

Using the notation of Buckingham and Massey (1941), the alpha-particle wave 
function can be expanded in the eigenfunctions of J and iM as  follows : 

m If112 1 

cyclic1.2,3 J=1 /2  1=5-1)2 '1 
T M  = 2 2 5' - f J M I ( Y 1 )  

~ C J M 1 , M + 1 1 2 C Y ~ , M + 1 , 2 ( e 1 ,  r b l ) ~ 1 + C J M 1 . M - 1 / 2 ~ J 2 . M - 1 / 2 ( e 1 ~  41>a1}#(- I)x(- 
( 3 . 1 3 )  

Mh being the s-component of the total angular momentum, CJMIm the appropriate 
Clebsch-Gordon coefficients and the CY ,m spherical harmonics. Using the notation 
of Hochberg et al. (1968--unpublished), each of the eigenfunctions may be expressed 
in terms of sub-states characterized by the quantum numbers Z and s of the orbital 
angular momentum and the spin. Thus, we write the complete wave function as 

Y L M  = 2 #( - l)F;,F( 1 - 2345) 
S 

(3.14) 
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where 
- 1 

I = I J - S l  Y 

J +  s 

F J s M (  1 - 2345) = C g j M i (  1,2345; Q) -fJsivi(~) (3.15) 

~ ; M L ( I ,  2345; Q) = 2 cJs~Mm~~~M(Q)xL-m(1, 2345) (3.16) 
JM + s 

m - M - s  
Q being the solid angle of r .  

For each J and M ,  in the doublet spin state (s = 9) for example, we put 

(3.17) 

(3 s9) 

J + 112 c 
(YJ:E1(Q) = 

112 
C J M ~ J + l i 2 ~ ~ i M + l i 2 ) ~ ~ ~ ~ ~ 2 ( 0 ~  $1 

and 

Equation (3.18) is a 2 x 2 matrix. Thus equation (3.15) can now be rewritten in the 
form 

gJsM( 1 - 2345) = - xYF.  (3.20) 
1 
Y 

Here 9Y always refers to 4yjMi(Q) which involves no spin functions whereas 
W;Mi(l, 2345; SZ) does, as shown by its argument, and will always be written in full. 

4. Formulation of n-4He scattering problems 

Schrodinger equation for the wave function y5 given by 

- 

The  formulation we are going to use is based on I. We start with the basic 

5 

(T,,,,, + i > 1 = l  Vij)Y(153, G) = E Y ( G 3 , G )  (4.1) 

where E is the total energy of the system in the CM system. E is given by 

E = E,+ E, ( 4 4  
where E, is the energy of the incident neutron, and E, is the energy of the alpha 
ground state, i.e. the binding energy of the alpha particle. T i 2 3 4 5  is the kinetic 
energy operator and v1234, the potential energy. 

Following the same procedures as given in I, we can write equation (4.1) using 
equation (1.2.3.) in I as: 

(TI - 2345 - E,)P( 1 - 2345) + 4 dT2345$*( I ,  2345) Vi&( I,2345)%-( 1 - 2345) s 
-2  1 dT2345+*(1, 234i)(:T1-234,+qT2-134~+ V12-En 
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The  equation forf,,(r) is given by 

where 

r = rl -4(r2 + r3 + r4 + r 5 )  
r' = r2-$(r1+r3+r4+r5)  

(4.4) 

5. The complete integro-differential equations for the elastic scattering 
of n-4He 
Coupled equations do not arise in the analysis of the scattering of n-4He. We 

shall therefore write down the full integro-differential equations for the uncoupled 
states for the radial wave functions. We shall collect the results obtained in equation 
(4.4) using equation (1.9) and regroup the terms in a way convenient for numerical 
calculations. 

Below are the complete integro-differential equations (for both the S- and D-state 
alpha wave functions) including the linear spin-orbit interaction, tensor interaction 
and the quadratic spin-orbit interaction. 

where 
l = J + i  and 1 =  J - &  
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and 
Y l ( Y )  = Q Y l ( Y )  

%l(Y)  = “(Y) + LS@[(Y)  + C O u y Y )  

V l ( Y )  = Q V ( Y )  

W l ( Y )  = Q,W(Y) 
Xl(Y, Y’) = C X [ ( Y ,  Y ’ ) + ~ S X l ( Y ,  Y’) + Q X , ( Y ,  Y’) + C 0 U l X l ( Y ,  Y’ )  + T X , ( r ,  Y’) 

+ T X l ” ( Y ,  Y’). (5.4) 
The above terms represent the contribution from various interactions indicated 

by the symbols attached. The  prime and the double prime symbols denote the S-D 
and the D-S interactions respectively. In  writing down the S-D and D-S terms 
we shall omit the indices and the prime symbols where there is no confusi0n.t 
5.1. The S-S direct terms 
5.1.1. The potential terms 

with 

On performing the integrations over complete vectors, the above integral leads to the 
following : 

8111 312 
‘%(r) = - 2 2 (4w + 2b - m - 2h)v - P, ( K )  exp{ - P,( K ) ’ & ~ }  5h2.=1 1 +c2 

7 Note that the symbols C, LS, T and LL or Q represent the central, linear spin-orbit, 
tensor and quadratic spin-orbit force respectively and Coul the Coulomb energy term. 
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O n  using the following relations: 

and 

f@ l(l+ 1) 
L 2 r Y S  = - 

r 

and on performing the integrations over complete vectors, the above integral becomes 

that is 

and 

L L  v 2 
exp{-PLL(K) pKr 

and 

and 
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O n  writing the spin-orbit operator VLs( 12) in full, the above integral becomes 

2 

x exp( - FIXE( 1)x( - 1) d r  dpz dQ. 

Using the relation that 

2 
io . r x - = L , o 

i3r 2 x*( - l)o2x( - 1) = 0, and 

the  last integral becomes : 

l 4 ( P 2 ,  P39 P4)!2  = 

T h e  above integral is easily evaluated and the result is 

5.2. The S-S indirect terms 
5.2.1. The energy terms 

dr'Y*(Q)x*(- l)+(s', P3,  P,)$(S, P3,  P4') s 
1 

x x( -2)WQ') - 7 f d r ' )  de3 dP4 
Y 

where 
4 4 
15 15 

s = - ( 4 r + r ' ) ,  s' = - ( r + 4 r ' )  

and 
x*(-l)x(-2) = -9. 
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The above kernel is easily evaluated and the final result is given by 

Hence 

1 
x $( - 2) -+(r’) dr‘. 

Y 

On performing the integrations of the above integral over complete vectors and over 
spherical harmonics, we arrive at the following result : 

E 

x [{38(r2+r‘2)- - (491+ 1 141) 
~ I + 1 , 2 ( ~ ~ ~ ’ ) + 4 9 ~ ~ ‘ ~ I . ~ 3 1 2  

xfiJ(r’)rr’ dr‘ dp, dp, 

5 2.2.  The potential terms 

c x  (y C&l)(r, y ’ )  $- c x ; 2 ) ( r ,  Y’) + c x 1 3 ) ( Y ,  Y’) 
1 7  

where 
2 4  2 2 (4m+2h-w-2b)vCU, ;  

I c = l  v = 1  

c (1) 

2 3u 80r.p: 2 C Y  

exp - --($’ +s  ) -  - -2ap4-  P ~ ( S ’ - S )  ] dp, dp, .s 2 3 
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x V( 1s’ - Qp3 I) dp, dp4 + a similar term with Y + r’ 
where 

2 4  

V( 1s’ - gp, 1) = 2 2 (w +m)v  “U; expi - ‘p;(s’ - 3p3)‘}). 
i c = l  v = 1  

The  integrations of the above integral over complete vectors and over spherical 
harmonics lead to : 

I x Bl + 1 , 2 { f ( ~ ) ~ ~ ’ }  + a similar term with Y ;+ Y‘ .  

17 1 16 
x exp - - e(r2 + Y ’ ~ )  

x rr‘ dr‘ dp3 dp, dQ‘. 
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On using Green’s theorem and the following relation 

/ . f ( ~ ’ )  dr’d!2’rxr’exp(-6(r2+P)-Er.  r’} 

a 
= - 11 . f ( ~ ’ )  dr’ dQ’ r’ x exp( - 6(r2 + Y ’ ~ )  -er , r’ 1 

and performing integrations over complete vectors and over spherical harmonics, we 
arrive at the following final result: 

E ar 
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5.3. The S-D and the D-S terms 
The  energy terms give the contribution. 

5.3.1. The potential terms 
'T 

S S - D ( r >  y r ) + T X D - S ( Y ,  r ' )  

-where 

wD = 3(a2 * r23)(a4 r 4 5 )  + 3(a2 a r45)(44 r23)  -2(a2 * 44)(r23 ' r45)  

.and 
4P2 16P3 3 /2  

N;=-&) 

S t j  is the usual tensor operator which has already been defined in this paper and U,, 
i s  the interaction operator between particles ( i , j ) .  Thus 

2 2 4  

x 2 2 2 (w + m>, expi - (Ji'r2 + 
i = l  7c=l  v = 3  
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The definition of all the parameters are given in Appendix 4. 

6. Phase-shift analysis 

the asymptotic form of the wave functions is of the following form: 
As pointed out previously, coupled states do not arise in n-4He collision. Thus, 

J;(4 = k,(+ cos 4J1+ l,Z(k.> + dx sin 4J- 1 - 1,2(k41 (6.1) 

where k is the constant amplitude, 6 is the phase-shift and J + 1/2, J - ; - are the 

B 
/ x c  

0 5 10 15 
Neutron energy in C M  system (MeV) 

Figure 3. S phase shift in n’He collisions. A, Seagrave 1953 ; B, Satchler et al. 
1968; C, our results. 

Bessel functions of half-integral order (angular momentum I), k is the wave number 
of the incident neutron given by 

where JW is the mass of a nucleon and E, is the energy of the incident particle in CM 
units. 
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Given the above formula forfz(x) at two neighbouring points, say r1 and rz, Mre 
have 

which immediately reduces to 

1401 

0 5 IO 15 
Neutron energy  in CM system (MeV) Neutron energy  in CM system (MeV) 

Figure 4. P phase shift in n-4He collisions. A, B and C as for figure 3. 

The amplitude k, corresponding to each phase-shift 6, can now be. found by writing 

A, = J(?Q/(COS 4 d ~ , J , + , , 2 ( k ~ l )  +sin 4V’~IJ-I-l,P(~Yl)). (6-5) 

Author 

Our result 
Seagrave 1953 
Satchler et al. 1968 

Our result 
Seagrave 1953 
Satchler et  al. 1968 

Our result 
Satchler et al. 1968 

Table 1. The so, &and 6: phases 

Energy 
E,, k2 =(8M/5fi2)E, K So phases 6; phases 

(MeV) (rad) (rad) 
5 0,193 0,440 -1,364 0,628 
5 -1.117 0.838 
5 -1.047 0.995 

10 0.386 0.622 -1.368 1.327 
10 -1.379 0.873 
10 -1.358 1.028 

15 0.579 0.761 -1.379 1.014 
15 -1.606 0.855 

8: phases 
(rad) 

-1.018 
- 1 e082 
-1.100 

- 1,369 
- 1 e396 
-1.344 

- 1 -425 
-1,552 

The phase 80 is calculated for the interval of integration h = 0.2 fm and for 1 = 0 and is 

The phase 6; is calculated for the interval of integration h = 0.2 fm and for I = 1 and is 

The phase 6: is calculated for the interval of integration h = 0.2 fm and for Z = 1 and is 

given in radians between the range -n/2 < 6 < 7712. 

given in radians between the range -5712 < 8 < 7712. 

given in radians between the range -7712 < 8 < 7~12. 
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Table 2 

h V U1 cL1 U2 cL2 

1 -57.301 0.781 -227.752 3.091 
2 -19.519 1.047 -45.081 2.860 
3 -150,433 0-961 -1331.301 3.569 
4 -9.768 0,378 2171.754 4.094 

Central 

1 8.720 0.956 38.279 3,351 
2 -220.659 1.826 -19269808 4.712 Spin-orbit 

Tensor 1 -72.680 0.848 -2230.868 3.149 
2 14.016 0,737 231.447 2.755 

1 36.934 1.620 673,374 4.909 
2 11.670 1.964 -2332,307 9.035 
3 5.050 1.387 -61.792 4.380 Quadratic spin-orbit 

4 -129.299 2.032 -4459.021 5.751 

U ,  are given in MeV and pK in fm - '. 

7. Conclusions 
The phase-shifts for the elastic scattering of neutrons by alpha particles were 

calculated for 5, 10 and 15 MeV incident neutron energies (CM system) and for t h e  
values of the angular momentum 0 < 1 < 1. 

Our phase-shifts were compared with the experimental phase shifts obtained b y  
Seagrave (1953) and Satchler et al. (1968) and found to be in good agreement apart 
from the 6;-phases. 

As shown by Omojola (1968--unpublished), the nuclear interaction used gives a 
binding energy of -26.038 MeV for the alpha particles as compared with the 
experimental value of - 28.2 MeV. 
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Appendix 1. Coordinates and transformations 
In  figure 5 the incident neutron is labelled as the particle 1 and has the position. 

vector r .  The other neutrons are labelled 2 and 3 and the protons 4 and 5 with 
respective position vectors r2, r 3 ,  r, and r5 

We define r as the coordinate of particle 1 relative to the centre of mass (CM) of 
the other four and r' as the coordinate of particle 2 relative to the CM of the other 
four. 
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2 3 

0 4  
p4 

Figure 5 .  

Choice of coordinates (see jgure  5 )  

r = r1 -&(r2+r3+r4+r5)  
r’ = r2 -&(Ul + r3 + r4 + r5)  

p, = r4-r5. 
P3 = r3 - H r 4  + r5) 

We define 

s = &(4r+r’)  = rl-$(rs+r4+r5) = p1 etc. 
s’‘ = i+(r + 4r’)  = 13 - ~ ( r ,  + r4 + r5)  p2. 

I n  the calculation for the indirect interaction the transformation used for the 
volume integration is drdl = dr,,,, = ( 16/15)3 dr’  dp, dp, with dr’  = Y ’ ~  dr’ dQ’, Q’ 
being the solid angle of r’ 

Appendix 2. Integration formulae and spherical Bessel functions 

The direct integrations 

I n  the calculation of the direct integrations, the following formulae are used : 

K/exp(-h(R-yr)2}dR = 1 

K j R exp( - A(R - yr)2) d~ = y r  

K I R2 exp( - h( R - yr)2)  dR = 3 /2X + y2r2 

K R3 exp{ -X(R - ~ r ) ~ )  dR = (5/2h+ y2r2)yr  

K I R 4  exp{-h(R-yr)2)dR = 15/4X2+(5/A)y2r2+y4y4 



648 D. A. F. Omojola 

K j  R6 exp(--X(R-yr)2) dR = 105/sX3+(105/4h2)y2r2+(21/2h)y4r4+y6r6 

K J  ( R  x A )  . ( R  x B )  exp(-h(R - - y ~ ) ~ }  dR 

K j R2(A . R)(B . R )  exp( - h(R - ~ r ) ~ }  dR 

x ( A  . B)  

= y 2 ( r x A )  . ( r X B ) + ( l / X ) ( A . B )  

= (7 /2h+y2r2)y2(A.  r ) ( B .  r>+(5/2X+y2r2)(1/2X) 

K j ( A  . R)(B . R ) ( c .  R ) ( D  . R )  exp(-h(R-yr)2} dR 
Y 

= y4(A . r)(B . r)(C . r ) (D . r )  + (y2/2h) 
x ( ( A  . B)(C , r ) (D , r )  + ( A  . C)(B . r)(D . r )  
+ ( A  . D)(B . r)(C , r )  + ( B  . C)(A  . r ) (D . r )  
+ ( B  . D)(A  . r)(C . r )  + (C . D ) ( A  . r)(B . r ) }  
+ (1 /4h2)((A . B)(C . D )  + ( A  . C)(B . D )  
+ ( A  I D ) ( B  . C)} 

K 1 R4(A , R)(B . R )  exp( - h(R - ~ r ) ~ )  dR 
= (y4r4 + (9/X)y2r2 + (63/4X2)y2(A . r)(B . r )  

+ ( l/2X)(y4r4 + (7/)0y2r2 + 35/4X2)(A . B )  

K 1 ( A  . R)3(B . exp( - h(R - ~ r ) ~ }  dR 
= y5(A . r)3(B . r)2 + (y3/2h)(3A2(B . r)2 + B2(A . r)2 

x ( A  . r )  + 2(A . B)2(A . r )  + 2A2(A . B)(B , r ) }  
+ 6(A , B)(A . r ) ( B  . r ) } (A . r )  + (3y/4X2)(A2B2 

K 1 SI2(R2) exp( - h(R - y r ) 2 }  dR 
= y2S12(r2) 

K j  ( A .  R)S12(R2)exp(-h(R-yr)2}dR 

K !” R2SI2(R2) exp( - X(R - ~ r ) ~ }  dR 

where 

= y2(A ‘ r)S12(y2) + (? / /+%, (A  r )  

= ((7/2X) + y2r2)}y2S12(r2)  etc. 

K = (h/7r)3/2 
and 

S12(A B )  S12(B . A )  = 3(Cl  . A ) ( c ~  . B )  - (01 . c ~ ) ( A  . B ) .  

The indirect integrations 

depend on the use of the following well-known formula: 
The  integrations over spherical harmonics in the indirect interaction calculation 

(A2.1) 
47i- 

8rr 
1 gl,(O,+) exp(-8r.r’) dL2 = 7 q m ( O ’ ,  +’)5Yl+l,2(8~r’) 
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where 

(A2.2) 
r = ( r ,  Q) = ( r ,  8, d) 

r’ = ( r ’ ,  Q’) = (r’ ,  B ’ ,  4’) 
dQ = sin B dB d+ 

and 
L%’~+~,~(X)  = i’-1’2(~~/2)1’2J,+l,2(ix). 

This formula is well known and has been used by many workers in several related 
scattering calculations (e.g. Sugie et al. 1957 and Hochberg et al, 1968-unpublished). 
The  derivation of the above formula (A2.1) can be found in several texts (e.g. Whit- 
taker and Watson 1952). The  first few values of the above Bessel function are given 
below: 

(A2.3) 1 L%’l,2(x) = s inhx  
sinh x 

g312(x) = - -cosh X. 
X 

The recurrence relations between the functions are (from e.g. Whittaker and 
Watson 1952) 

(A2.4) 

and 

(A2.5) 

From equations (A2.4) and (A2.5) we deduce the following result: 

(A2.6) 

Also, from equation (A2.3) we deduce the following relation : 

Appendix 3. Numerical constants 
The alpha radial wave functions 

The S-  and D-state alpha radial wave function parameters CI, ,8 and c are deter- 
mined from the variational calculation of the binding energy of 4He by the direct 
search method (Omojola 1968-unpublished). 

The  value of c( obtained from the variational calculation of the binding energy 
of 4He is not used in our calculations in this work, instead 6: is taken to be 0.140 fm-’. 
This value assigned to M is established from high-energy e-4He scattering. The  
numerical values of these parameters are listed below : 

M = 0.140 
/3 = 0.262 

and 
c = 0,145. 
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Both 0: and p have the same unit of fm-2 (i.e. cm-2). Other constants used 
are given below: 

M/h2 = 0.024148 x loz8 cm-2 MeV-I 
E, (experimental) = -28.2 MeV 

E, (variational) = -26.038 MeV 
and 

e2 = 1.445 x cm MeV. 

The nuclear interaction 
The  interactions defined in various sections are defined in general by 

and in the case of the tensor force only by 

2 R ( V )  A ( V )  2 
V(r )  r 2 U, exp{- pK r >. 

The numerical values of U, and p, are given in table 2. 
i c = l  

Appendix 4. Collection of parameters 
The  parameters defined in the direct interaction calculation are as follows: 

s-s 

160: 
160:+3LSp$" 

P L S ( K )  = 

n 

I n  the indirect calculation the following parameters are defined. 

s-s 
c ( V )  

h,(K)  = e (40 : -3  pK ) 
LS 0) .) = (40: - P K  ) 
LL ( V )  

h L L ( K )  = $3 (40:- 3 p, ) 
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